On the Minimum Volume Covering Ellipsoid of Ellipsoids
نویسنده
چکیده
We study the problem of computing a (1+ )-approximation to the minimum volume covering ellipsoid of a given set S of the convex hull of m full-dimensional ellipsoids in Rn. We extend the first-order algorithm of Kumar and Yıldırım that computes an approximation to the minimum volume covering ellipsoid of a finite set of points in Rn, which, in turn, is a modification of Khachiyan’s algorithm. For fixed > 0, we establish a polynomial-time complexity, which is linear in the number of ellipsoids m. In particular, the iteration complexity of our algorithm is identical to that for a set of m points. The main ingredient in our analysis is the extension of polynomialtime complexity of certain subroutines in the algorithm from a set of points to a set of ellipsoids. As a byproduct, our algorithm returns a finite “core” set X ⊆ S with the property that the minimum volume covering ellipsoid of X provides a good approximation to that of S. Furthermore, the size of X depends only on the dimension n and , but not on the number of ellipsoids m. We also discuss the extent to which our algorithm can be used to compute the minimum volume covering ellipsoid of the convex hull of other sets in Rn. We adopt the real number model of computation in our analysis.
منابع مشابه
On the Minimum Volume Covering Ellipsoid of Ellipsoids
Let S denote the convex hull of m full-dimensional ellipsoids in Rn. Given > 0 and δ > 0, we study the problems of computing a (1 + )-approximation to the minimum volume covering ellipsoid of S and a (1 + δ)n-rounding of S. We extend the first-order algorithm of Kumar and Yıldırım that computes an approximation to the minimum volume covering ellipsoid of a finite set of points in Rn, which, in ...
متن کاملMinimum Volume Enclosing Ellipsoids
Two different methods for computing the covering ellipses of a set of points are presented. The first method finds the optimal ellipsoids with the minimum volume. The second method uses the first and second moments of the data points to compute the parameters of an ellipsoid that covers most of the points. A MATLAB software is written to verify the results.
متن کاملElliptic Indexing of Multidimensional Databases
In this work an R-tree variant, which uses minimum volume covering ellipsoids instead of usual minimum bounding rectangles, is presented. The most significant aspects, which determine R-tree index structure performance, is an amount of dead space coverage and overlaps among the covering regions. Intuitively, ellipsoid as a quadratic surface should cover data more tightly, leading to less dead s...
متن کاملCovering an ellipsoid with equal balls
The thinnest coverings of ellipsoids are studied in the Euclidean spaces of an arbitrary dimension n. Given any ellipsoid, our goal is to find the minimum number of unit balls needed to cover this ellipsoid. A tight asymptotic bound on the logarithm of this number is obtained. © 2006 Elsevier Inc. All rights reserved.
متن کاملMinimum norm ellipsoids as a measure in high-cycle fatigue criteria
1. Abstract This paper focuses on the use of minimum norm ellipsoids in stress-based fatigue criteria. We consider both the theoretical issues involved in constructing mathematical models for high cycle fatigue endurance limits and the computational features concerning the application of the resulting fatigue criteria. In the present approach, the macroscopic level of continuum is enhanced with...
متن کامل